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TECHNICAL MEMORANDUM X-64906

TECHNIQUES FOR TRAJECTORY OPTIMIZATION
USING A HYBRID COMPUTER

INTRODUCTION

Numerous applications of optimal control theory have been made to the
control and guidance of aircraft, launch vehicles, and spacecraft. In general,
however, optimal guidance solutions have been evaluated off-line and any on-
board guidance updating capability has been limited to quasi-optimal schemes
such as the Iterative Guidance Mode [1]. The limiting factor in any on-board
guidance updating scheme is the computing speed available. The solution of
optimal control problems requires repeated integration of sets of differential
equations - a time-consuming operation.

The proposed MASCOT system [2] would allow the on-board solution of
optimal guidance problems by using new high-speed algorithms for numerical
integration of the differential equations on a digital computer. An alternative
approach is to use hybrid computation, with a high-speed model of the flight
system being contained in the analog portion of the computer. This method
will give very fast integration times but raises particular computational
problems because of the limited accuracy and amplitude range of the analog
variables.

The Indirect Method [3] for obtaining optimal control solutions converts
the problem into a two-point boundary-value problem. A solution can then be
found by iteratively searching the initial condition space for the unknown initial
condition vector of the co-state variables. This solution vector is more easily
handled by a hybrid computer than the complete state and control vectors,
which have to be stored when using Direct Methods [3].

The solution of the two-point boundary-value problem has been studied
on an iterative analog computer [4-61. The present research was initiated
with the aim of implementing those techniques on a full hybrid computer and of
studying some of the outstanding computational problems.

The structure of this report is as follows. The Indirect Method of solu-
tion is formulated in the next section. The following section describes the
automation of feedback switching [41 which is necessary to ensure convergence
of the iteration from an arbitrary initial guess; disturbances from the nominal



solution, which can cause the analog variables to saturate, can also be handled.
Contour Modification was found to be helpful in the original study [5) but
required impractical analysis to use it. A numerical approach is described in
the section titled Contour Modification. A simulation of on-line updating [6],
which uses the techniques described in the previous sections, is presented in
the section, Progressive Updating. The conclusions are given in the final
section.

FORMULATION

Let the dynamic system be represented by the set of state equations,

(t) = f[x(t),u(t)] (1)

where x(t) is an n-vector of state variables, x( t) , i = 1, ... n; u(t) is an

r-vector of control variables, uj( t), j = 1, ... r, and f is an n-vector of

known functions, fk' k= 1, ... n.

The problem is to determine a control vector u*(t) (superscript * indi-
cates an optimum quantity minimizing J) in the interval to _ t s tf such that a

performance index J = J [X(tf)1 is minimized. J is considered to be of the
form,

tf

J = K[x(tf)] + f L[x(t),u(t)] dt (2)

to

so that an additional state variable must be defined by

o(t) = L[x(t),u(t)]= fo[x(t),u(t)] (3)

giving X(t) as an (n + 1) vector of state variables, x (t), 1= 0, 1, ... n.
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The function u*(t) can be determined from Pontryagin' s Maximum
Principle by forming the Hamiltonian,

n

Rlx(t) p(,(t) l E pi (t) fiI(x t),u t) (4)
i= 0

where p( t) is an (n + 1) vector of co-state (adjoint) variables, p i(t), i = 0,
1, .. n with p0(t) = -1.

The function p( t) is chosen such that three necessary conditions are
satisfied [7] as follows:

1. Canonical Equations:

t) j= , .. n

(5)

S 8 ax.( t)

2. Boundary Conditions:

Initial:

x(to) = X0 (given - present state) (6)

final:

p( tf) = x x( tf) (transversality condition) (7)

or

x(t) =X f  (given - target state) . (8)
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3. Maximization of the Hamiltonian:

[x(t),p(t),(t)t) ] - T[x(t),p(t),u(t)] (9)

for all t, to- t - tf.

Thus, u*( t) can often be found by solving the equation,

ax . (10)
a u( t)

The Direct Method of solution proceeds by choosing a nominal u( t) ,
integrating the state equations forward from to with starting values X, and
storing x( t) ; then the co-state equations are integrated backward from tf

with starting values p( tf) and using the stored x( t) , such that necessary

conditions 1 and 2 are satisfied; u( t) is adjusted iteratively until condition 3
is satisfied.

The Indirect Method of solution uses equation (10) to replace u( t) as a
function of x( t) and p( t) in the canonical equations, which are then integrated
forward with a nominal choice of p( to) . The initial co-state vector is adjusted
iteratively until the final conditions in condition 2 are satisfied. Thus the
problem is converted into a classical two-point boundary-value problem.

In connection with the Contour Modification technique, to be discussed
later, an augmented performance index Jm can be formed:

Jm = J a ie(t

where a is an n-vector of weighting coefficients a., i = 1, ... n, and e(tf)

is an n-vector of boundary errors e., i = 1, ... n being the errors in datisfy-

ing the required final conditions in condition 2. Contour Modification is con-
cerned with the optimum selection of the weighting coefficients a.

4



FEEDBACK SWITCHING

General Considerations

The stabilizing effect of feeding back a function of the boundary error
e( tf) on the iterative solution of trajectory optimization problems has been

demonstrated [4-5], although the switching point and the magnitude of each
change were determined manually. In order to consider on-line control
updating, the solution must be obtained completely automatically, which
implies computer control of feedback switching. A hybrid computer is ideal
for this purpose in that the digital computer can easily generate the logical
decision to reduce or increase the feedback according to the progress of the
iteration.

The implementation of automatic feedback switching raises three basic
questions:

1. What should be the initial level of feedback?

2. What fractional change in feedback should occur at each stage?

3. What criterion should determine the switching instant?

There is no simple answer to these questions and the various parameters must
be determined from experience and by trial and error. This is a feature of
any iterative method to some extent; for example, in gradient methods, step-
size selection is always a difficult problem and stopping conditions are hard to
define exactly. Program control of the iterative loop parameters will often be
sufficient to ensure a convergent iteration.

In the preceding item 1, if the nominal choice results in the overload of
some analog variable, successive increases in feedback can be made until
stable state and co-state trajectories are achieved. Items 2 and 3 are strongly
interactive. The fractional change can be under program control so that a
larger number of stages can be used when a particular problem shows itself to
be very sensitive, or vice versa. However, if switching occurs too soon, then
instability in the subsequent stage is likely also.

With the object of trying to keep the overall iteration time as small as
possible, a workable strategy is to maintain the chosen level of fractional
change constant while trying to generate a convergent sequence of iteration
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stages by controlling the switching point. For example, if switching from one

stage to the next occurs too soon, resulting in analog variable overload, then
the feedback is switched back to the previous level and closer convergence
attempted at that stage until subsequent switching results in a stable trajectory

at the lower level of feedback. If this method breaks down, then a reduced

fractional feedback change at each level is allowed.

By operating this two-level form of control, it should be possible to

achieve a sequence of iteration stages which converges to the optimum solution

with no feedback. The tradeoff for the two control levels is between increasing
the time spent at each iteration stage by delaying the switching point and

increasing the number of stages by reducing the fractional feedback change, both
factors tending to increase the overall iteration time.

There is no precise criterion which can be used to determine the switch-

ing point at each stage. Each subproblem has an inherent suboptimal format

because of the inclusion of boundary-error feedback, so that the necessary con-

ditions for optimality, which can provide a stopping condition, are no longer

valid. An empirical criterion, which has been used successfully in this work,
is to set a lower bound on the gradient of the objective function taken over one
hill-climbing step. If the change in objective function falls below this bound,
then switching occurs and the feedback is reduced ready for the next iteration
stage. Variation in the magnitude of this lower bound provides the control in
switching level referred to above.

The Algorithm

The i-th stage of iteration can be expressed by the following
relationships [41 :

1. Canonical Equations:

= f(xp) +C(i)w (x,)
- X

(( i) 11)
= g(xp) + C) w (x, (

p -p
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where C x , C are diagonal coefficient matrices; w (x, p) is an n-vector chosen

such that e x(tf) - 0; w p(x, p) is an n-vector chosen such that e ( tf) -- 0;

ex(tf) is the error in satisfying boundary conditions on x (tf), and e (tf)

is the error in satisfying boundary conditions on p(tf).

2. Algorithm for Computing p* ) ( t0): The term p* ( (to) is the
value of the co-state initial vector which minimizes J[ ( tf ) at the i-th stage,

p(ilj+)(t 0)= p(ij)(t) + Ap ( i j )  (12)

where Ap j ) is the incremental change in the j-th approximation to

p* )( t) , here given by k J( i j)/ p ij)( to) (steepest descent); Ap( ij)

produces a change in J of AJ(i j)

3. Feedback Switching:

a. Decrease in feedback: if

A (i j) 
( E 13)

where E is a preset lower bound, then

C (i+) A i) C( ) (14)

where (i) < 1 determines the reduction in contribution of w(x, p) for the
(i + 1) th stage,

b. Increase in feedback: if

J[(tf)]a Jmax (15)



then

c( i+ 1)  -1 c (l)  (16)
C(i)

where J is an upper bound imposed by saturation of the analog variables.
max

Hybrid Implementation

Program Structure. The basic structure of the hybrid program, written
to implement the algorithm described in the previous section, is shown in
Figure 1. The various segments are described as follows.

Main program EXEC is used to set up the hybrid interface, initialize
the problem, and monitor the progress of the overall iteration. Subroutine FN
controls the objective function evaluation and makes logical decisions as to
feedback changing, gradient evaluation, parameter updating, and convergence.
Subroutine INT controls the mode of the analog computer to integrate the
canonical equations from given initial conditions and returns a value of objec-
tive function. Subroutine GRPRT calculates first and second derivatives of the
objective function with respect to the parameters (co-state initial conditions) .
Subroutine SD controls the steepest descent updating of p( t0) and the step size
used in equation (12). Subroutine FDBK controls the changes in feedback and
the level used.

A flow chart of the hybrid program is given in Figure 2; the parameters
are listed as follows:

n
BE Boundary error e ( tf)2

BEmi n  Minimum BE, used as a stopping function for the overall
iteration

FB Current feedback level, C i)

VN Current value of objective function

VS Lowest value of VN stored

V Upper bound on VN, indicating analog saturationmax
Vmin Lower bound on VN, used to accelerate convergence at each

iteration stage
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GIRADV Change in VN with respect to parameters recorded over one
iterative step

E Lower bound on GRADV.

Computer Assignment. The canonical equations (11) are programmed
on the analog computer (680). Integration of the equations is initiated by
setting a sense line from the digital computer (640). The period of integration
is controlled by means of a counter on the analog logic patch board; the period
is under program control since the counter is loaded from the 640 by setting
sense lines. The state and co-state variables, the objective function, and the
boundary-error terms are all calculated on the 680 and transferred to the 640
through the ADC.

The state and co-state initial conditions, the feedback coefficients, (and
the Contour Modification weighting coefficients when appropriate) are calculated
on the 640 and transferred to the 680 through the DAC' s and MDAC' s. Various
logical operations are made on the 680 to synchronize analog mode control with
data transfer across the hybrid interface. All other operations are performed
on the 640.

Application

The hybrid program, described in the previous section, has been applied
to two second-order systems which were studied previously (see Appendix A).
The same convergence problems as before were encountered at the final stage.

Adjustment trajectories for the system with terminal cost (System I)
are shown in Figure 3a. These can be compared with those obtained using the
manual-iterative analog version of the algorithm, shown in Figure 3b [51. The
need to improve the final convergence is clearly indicated in both cases. The
method used in the previous study was Contour Modification, which is discussed
in the next section.

Because the problem is much worse for more sensitive systems, such
as System II, no further comparative results are available for application of
the basic algorithm.

9



CONTOUR MODIFICATION

Introduction

The need for Contour Modification and the means for achieving it have
been noted [5]. However, the necessity of using the system transition matrix,
in solving for the required weighting coefficients a, makes the technique
impractical for general use.

An attempt to develop a strictly numerical approach and its imple-
mentation on the hybrid computer are described in the following subsections.
The idea behind this technique is that as the overall iteration progresses,
much information about the topology of the objective function surface is gen-
erated through repeated gradient calculations. It would appear reasonable
that, given the means for achieving Contour Modification, use could be made
of this topological information in choosing the necessary weighting coefficients.
The concept is therefore one of a hill-climber operating on a "hill" which is
constantly evolving towards an optimum shape, namely hyperspherical.

Criterion Function E

The orthogonality and eccentricity minimization criteria that were
used for analytic calculation of the optimum weighting coefficients [ 5] are
equivalent to the single criterion that the augmented objective function shall
have eigenvalues which are all equal in magnitude. This condition can be
recognized by examining the matrix of second derivatives of the objective
function. When the off-diagonal terms are all zero and the diagonal terms all
equal, the objective function will be hyperspherical. Thus the optimum
weighting coefficients can be determined from the minimization of a criterion
function based on the second derivative matrix.

Let

H = [hi.] ; i,j= 1, ... n

be the matrix of second derivatives of the augmented objective function Jm
with respect to p( to) . Then a suitable criterion function is given by

E = E, + E2  (17)

10



where

n-1

E hiihi + 1 (18)
i= 1

E = hh ; i j (19)
i=1 j=1

Generation of E should be well suited to the hybrid computer in that
the first and second derivatives can be determined by a finite difference
method [81 involving repreated solution of the state and co-state equations.
This method would seem preferable to that of using influence coefficients [ 91
to determine the gradients, with the attendant large increase in the number of
equations to be programmed.

Unfortunately, E itself is extremely sensitive to the values of a, with
the result that implementation on the hybrid computer has not been very
successful. However, experiments with all digital computations to obtain ~*
through minimization of E have been performed successfully.

Minimization of E

The choice of algorithm for minimizing E is dictated primarily by
the way in which E is calculated. When H and hence E are determined
by a finite-difference method, no analytic expression is available for comput-
ing the gradient of E with respect to a . Grad E would itself have to be
determined by a finite-difference method, leading to a very rapid increase in
the number of function evaluations through solution of the system of canonical
equations.

One computation of E takes (2n 2 + 1) equation solutions [8). One
computation of Grad E takes 2n evaluations of E, thus 2n(2n2 + 1) equa-
tion solutions.

If influence coefficients are used to determine the gradients of the
objective function, then an analytic expression for Grad E can be determined
(see Appendix B). The number of function evaluations is reduced substan-
tially, at the expense of 2n2 additional equations to program.
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It is preferable to use a direct-search type of algorithm, which does
not require gradients, for minimizing E. The sensitivity of E, mentioned
above, poses a problem for this type of search. However, various sophisti-
cated algorithms have been developed, among, them Zangwill' s modification
( 10] of Powell' s method [ 111, generally considered to be one of the most
effective techniques [121. This type of search requires repeated linear
minimizations which can be performed in a variety of ways, among them
cubic interpolation, quadratic approximation, and Golden Section search [ 12].
The latter method was used for the hybrid formulation because of its basic
simplicity; although requiring more function evaluations, it is less sensitive
to errors in data transfer across the hybrid interface.

Implementation
Digital Computation. Various algorithms have been applied to the

problem of finding a* for System I. The results are presented in Table 1.
The label "formula" refers to E being evaluated through the solution of the
state transition matrix, thereby allowing gradient calculation in a closed
form. "Analytic" refers to a closed-form solution of the optimization prob-
lem for oa - possible for this simple case. In all other iterations, E was
obtained through a finite-difference evaluation of H.

Although Zangwill' s algorithm used with GOLD1 required more than
twice as many function evaluations as with QUADF, the simplicity of the
method is generally more reliable, as evidenced by the results shown for
System II. Although only second order, this system displays an objective
function V and a criterion function E which are extremely sensitive to their
respective parameters.

Hybrid Computation. The results of attempting a hybrid minimization
of E are presented in Table 2. Convergence is erratic, the principal source
of trouble being the evaluation of E. Computing H via finite differences,
and then E from the elements of H , involves several subtractions of
nominally similar quantities. The accuracy of the A-D and D-A converters
in the hybrid interface is such that these subtractions can introduce large
errors into the iteration.

It was hoped to combine the iteration on ac with the feedback iteration
on p(to), described earlier. This would have allowed an evaluation of the"adaptive hill" concept discussed in the introduction to this section. How-
ever, the memory capacity of the EAI 640 computer is too small for the two
programs to be loaded together so the double iteration could not be attempted.

12



TABLE 1. COMPUTATION OF a* (DIGITAL)

Function

Algorithm Iterations Evaluations min a 1* Ca2*

System I

Z/QUADF 4 44 0. 0219 2.239 -1. 646

Z/GOLD1 3 94 0. 01925 2. 223 -1.632

CONJ/GOLD1 11 217 0.00787 2. 225 -1.634
(formula)

CONJ/CUBIC 4 38 0.00028 2.232 -1.641
(formula)

Z/GOLD1 3 94 0. 01926 2. 223 -1. 632
(formula)

Z/QUADF 4 40 0. 0998 2. 229 -1.634
(formula)

HYBRID 3 111 1.2500 2.017 -1.463

ANALYTIC 2.230 -1.640

System II

Z/G.OLD1 10 548 0. 000 19.39 -2. 209

Z/QUADF No Convergence

ANALYTIC 19.90 -2.275

Key: Z - Zangwill' s Direct Search
CONJ - Conjugate Gradient Search
QUADF - Linear Search with Quadratic Fit
CUBIC - Linear Search with Cubic Fit
GOLD1 - Linear Search with Golden Sections

13



TABLE 2. COMPUTATION OF o* (HYBRID)

Criterion
Function Function

(Y) Iterations Evaluations Ymin at * 2

E 6 188 0.5820 2.168 -1.628

Et/2  3 111 1.2500 2.017 -1.463

E1/2 3 153 6.442 2.362 -1.625

Nevertheless, the basic algorithm was used with optimum values of
a computed in the all-digital program. Adjustment trajectories for System
I are shown in Figure 4. Comparison with Figure 3a shows the effectiveness
of Contour Modification in improving the overall convergence.

A hand-plot of the progress of the iteration for System II is given in
Figure 5; an automatic plot of the same adjustment trajectory proved to be
too crowded to be meaningful.

Discussion

The results presented in the last subsection indicate that a criterion
function for choosing the optimum weighting coefficients, to achieve Contour
Modification, can be minimized through a direct-search type of algorithm.
However, the features of the criterion function and its evaluation on the
hybrid computer are such that inconclusive results have been obtained as to
its usefulness. It is not clear at present what alternative criterion could be
used that might lend itself better to minimization on the hybrid computer.

PROGRESSIVE UPDATING

Introduction

The techniques described in the sections on Feedback Switching and
Contour Modification have been developed to enable solutions to trajectory
optimization problems to be obtained on a hybrid computer. Optimal guidance
is essentially a trajectory optimization problem so that nominal guidance laws

14



can be computed. However, as noted previously, optimal solutions are gen-
erally very sensitive and large errors can appear toward the end of a trajec-
tory interval, as a result of the limited accuracy obtainable from a hybrid
computation.

A Progressive Computation or Progressive Updating method has been
developed to overcome the error buildup [61. Not only is the nominal guidance
law corrected as the flight progresses but also the features for on-line guid-
ance are contained in the method. Since the trajectory optimization problem
is repeatedly solved for diminishing intervals, changes in the required end
conditions or disturbances to the trajectory are easily accounted for. A
description of the method follows and experimental results are presented.

Method

Solution of the trajectory optimization problem has been obtained in
terms of the initial condition vector for the co-state variables. To recon-
struct the optimal control function in real time, a simulation of the system
co-state is required, to be used in conjunction with the measured (or esti-
mated) system state vector. The interconnection of a high-speed computer
model and real-time hardware (or plant) was suggested by Paiewonsky [13]
and is shown in Figure 6.

The initial high-speed computation is carried out over the complete
control interval (tf - to) and p* (to) is transferred to the real-time co-state

simulation. After a given time interval, 7 , has elapsed, the plant state and
co-state are sampled and transferred to the model. A new high-speed com-
putation is then started over the reduced control interval tf - (t o + T) with

x(t 0 + 7) as the initial state vector and p(t 0 + 7) as the first guess at the

required optimal vector p*(t 0 + T) . When obtained, the new optimal initial

co-state vector for the control interval tf - (t 0 + 7) is transferred to the

real-time co-state integrators and the plant trajectory proceeds from
x(t 0 + T) and p*(t 0 + T) . The procedure is repeated at regular intervals 7

throughout the overall control interval (tf - t 0 ) and thus the control is con-

tinually updated, ensuring a nearly optimum trajectory over the remaining
time.

The time taken to perform the high-speed computation has been
neglected in the preceding description but can be allowed for by using the
model to predict the state of the plant after the computation time, AT . In
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this way, for the r-th computation, p*(to + rr + AT) is computed on the

model instead of p*( to + rT) , relying on the fact that x( to + rT + AT) , as
measured on the model, should be a close approximation to x( to + rr + At)
on the plant.

Hybrid Simulation

The updating scheme described above was simulated on the hybrid
computer, although the allowance for computing time was not included. This

omission greatly simplified the timing and synchronization of the simulation,
which is described by the following steps:

1. From the given initial state x(t 0) and the guessed initial co-state

p( to) , the approximation to the optimal initial co-state p*( m)(to) is com-

puted on the model. Predetermined weighting coefficients a ( to) are used.

2. The plant equations are integrated over an interval from initial

conditions x( to) , p*( m) ( t0) ; x( to + 7) , p( to + r) and the cost incurred
x0( to + T) are measured from the plant.

3. From the measured initial state x( to + r) and the measured
initial co-state p( to + T) , the approximation to the optimal initial co-state

p* m)(to + T) is computed on the model. Predetermined weighting coeffi-
cients c( to + r) are used.

4. Replacing t O by t r , r 1,2, ... ,(q- 1), where

t - t +1
r r-1

(tf - to0)

steps 2 through 4 are repeated until r = q - 1.

5. With r = q - 1 and hence t r+= t f, the final state x(tf), final

co-state p(tf) , and final cost incurred x0(tf) are measured from the plant.

16



6. The total cost incurred by the plant over the complete control
interval, i. e., the performance index J, is given by

J[(tf) - K[x(tf) + x0(tr) (20)
rIl

where

A xo

x

Both model and plant were simulated on the analog portion of the
hybrid computer. Time scales were under digital control, with the model
being run one thousand times faster than the plant.

Because of the difficulty of implementing the computation of a on the
hybrid computer, the weighting coefficients were computed for the various
time intervals in an all-digital program and input as data to the hybrid
program.

Experimental Results

To assess the effectiveness of progressive updating, the method
should be applied to a sensitive system, in other words, one in which the

trajectory computed over the complete control interval from p*(m) ( to)
diverges from the true optimum trajectory.

Comparative trajectories for System I are shown in Figure 7.

Clearly, the single trajectories computed from p*( m) (to) (as obtained in
Figure 4) are close to the optimum trajectories. (The latter were obtained
from an all-digital solution as in Reference 6). Therefore, there is nothing
to be gained from using Progressive Updating with this system.
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However, this is not the case for System II. Comparative trajectories
are shown in Figure 8 and divergence from the optimum is evident. The
third trajectories in Figure 8 were obtained through application of the Pro-
gressive Updating scheme; strip-chart recordings of the same trajectories
are shown in Figure 9. The effect of Progressive Updating in driving the
state and co-state trajectories towards the optimum is clearly seen.

Comparative values of the performance index for the trajectories of
Figure 8 are

Single computation: J = 15. 08

Progressive updating: J = 4. 03

Digital (optimum) computation: J = 3. 04

These values were obtained from equation (20). Table 3 gives the values
of a used at each updating stage.

TABLE 3. a* USED FOR EACH STAGE OF
PROGRESSIVE UPDATING

Updating T
Stage _

0 ( 19.380 -2.210 )

1 ( 12.510 -1.232)

2 ( 7.485 -0.560)

3 ( 3.980 -0.147 )

4 ( 1.682 -0.047 )

5 ( 0.518 0.081 )

The principal on which Progressive Updating is founded is that tra-
jectories generated from a hybrid solution ( inherently having some error)
will be most nearly optimal during the early part of the trajectory. There-
fore, the more often updating can occur, the more accurate will be the over-
all trajectory. The faster a solution can be obtained, the more often updating

18



can occur. Consequently, on-board guidance updating requires as fast a
computing method as possible, hence the consideration of a hybrid mode.
The net result is a classic tradeoff between speed of computing and the
accuracy of an individual solution.

CONCLUSIONS

On-line solutions of trajectory optimization problems, for use in real-
time guidance updating schemes, require a high-speed iterative computation.
One approach is to exploit the rapid integration capability of a hybrid com-
puter. Certain computational difficulties arise, however, because of the
limited precision and amplitude range on an analog computer. Possible
methods for overcoming these difficulties have been studied in this report
with varying degrees of success.

Solution of the optimization problem is obtained in terms of the initial
co-state vector. Convergence from an arbitrary initial guess is uncertain,
due largely to the inherent instability in the canonical equations, causing
saturation of analog variables. A feedback technique has been developed to
force the state and co-state variables toward satisfying given boundary con-
ditions, thereby maintaining stability in the trajectories. Although basically
empirical in its implementation, the technique has been successfully applied
to simple dynamical systems, simulated on the hybrid computer.

Final convergence of the feedback technique is, however, subject to
the difficulties mentioned above since feedback is removed over the last
stage. The known final boundary conditions have been used to stabilize the
final convergence by augmenting the objective function in the solution space.
The criterion used for such objective function contour modification has been
to diagonalize the matrix of second derivatives, generating eigenvalues of
equal magnitude.

The appropriate weighting coefficients for modification have been
successfully calculated with an all-digital program. A similar hybrid
program, however, was not successful in generating a stable solution. The
extreme sensitivity of the criterion function itself has been identified as con-
tributing to this difficulty, together with inherent noise in the analog and
linkage portions of the computer.
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A simulation of progressive control function updating was performed,
using weighting coefficients calculated digitally. Both a high-speed model and
a simulated real-time plant were programmed on the analog computer.
Experimental results have shown that improved trajectory tracking can be
obtained by regularly updating the optimal solution. The initial solution,
computed by the feedback technique with contour modification, provides an
appropriate control function over the initial stages of the trajectory. The
tendency for this primary solution to be in error as the trajectory progresses
is corrected by the updating scheme.

The hybrid computer has been shown to be useful in generating on-line
optimal guidance functions. However, the stability and speed of the primary
solution remains an area for further study.
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APPENDIX A

SYSTEM EQUATIONS

The canonical equations, boundary conditions, and performance indices
for the systems on which the algorithms were tested are given below:

1. System with Terminal Cost:

tf
2 2 u2

J x1 (tf) + 2 (tf) 5 u dt

1 =  2 l = 0 = -0.1p 2

2  1 2if*
2 U 2 P

1 O 2 x1( tf)
x(t 0) p(tf) t

0 2 x 2(tf)

2. Lag plus Integrator System:

t

S x12 + 5 u2) dt

1 = x2 pl = -2 1 u - 0. 1 p

x2 =-x2+ u p2 = -p + P2

1. O0

x(t 0 ) [ ; P(t) [:1
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APPENDIX B

ANALYTIC DETERMINATION OF GRAD E

The components of H = [h.. i,j = 1, ... n, can be evaluated from

successive measurements of the first derivatives m., i 1, ... n.
1

(s)
At a nominal point s, measure m , r = 1, ... n. At successive

(q) r
points q, measure m , r= q, ... n;q= , ... n where points q are

obtained from the nominal point s by perturbing Pq(t 0 ) by an amount A Pq(t0)

and holding all other components of P(t 0 ) fixed. Then,

(i) (s)m -m.

ii 2 Ap.(t 0
1 1

(j) (s)

h. 2 ; i >j ; i=, ... n

j 1, ...n

h..

n-1 n n
E (h - h +Y 1) 2  1(hh )

ii i+ 1, i+1 2 I = 1 2 ij ji)

i= 1i=1 j=1

The derivative of E with respect to a is required:

SE n- 1 ahii hi+ 1, i+ 1
aa 2 (hi -h )a a k

k i=1 k k

n n 8h .h.
+ E Z h. --J + h . La (B- 1)

i=1 j=1 2 ij 0k ji kBa
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Now m can be expressed in terms of influence coefficients [9j, evaluated
from additional differential equations:

( j) n
i Yri+ p ri

where

Sx ( t)

Yri(t) = rr a Pi to0

8pr(t)

( 0 r( 0

V 0 a V

x 8p (t)
DVr

VPr = Pr0t)

Writing

A m.() m.) - m. ( s)
i 11

n V + AV (j)
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then

8Am.(j)  n x p

yri +  z r
k r1 k k

Sh..

S I. (B-2)
8a k

Substituting equation ( B-2) into equation (B-1) allows 8 E/8aOk to be evalu-
ated, since AV and AV are functions of a.

x24
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CALLGRPRT: CALLSD:
EVALUATE REDUCE
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YES IS

NO

CALL GRPRT:
EVALUATE

CALL SD: GRADIENTS CALL FDBK:
UPDATER(0) I I REDUCEFB

CALLSD:
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UPDATE p(0)
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Figure 2. Flow chart of hybrid program.
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Figure 3. Adjustment trajectories for System I.
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Figure 3. Adjustment trajectories for System I.
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Figure 6. PPTIMIZER

Figure 6. Progressive Updating model.
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a. State trajectories.

Figure 7. Comparative trajectories for System I.
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b. Co-state trajectories.

Figure 7. Comparative trajectories for System I.
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Figure 8. Comparative trajectories for System II.
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b. Co-state trajectories.

Figure 8. Comparative trajectories for System II.

36



-1.0

S0)e o- 0 = 01
0.44

VERTICAL: 0.05 V/line
HORIZONTAL: 20 mm/sec

P2

a. Single trajectories.

Figure 9. Strip chart for System II.



-x*

- 1.0
(0) (0)

12.

VERTICAL: 0.05 V/ine
HORIZONTAL: 20mm/sec

P2

b. Progressive trajectories.

Figure 9. Strip chart for System II.



APPROVAL

TECHNIQUES FOR TRAJECTORY OPTIMIZATION
USING A HYBRID COMPUTER

By P. L. Neely

The information in this report has been reviewed for security classifi-
cation. Review of any information concerning Department of Defense or
Atomic Energy Commission programs has been made by the MSFC Security
Classification Officer, This report, in its entirety, has been determined to
be unclassified.

This document has also been reviewed and approved for technical
accuracy.

,/ A. LOVING'OD
Director, Systems Dynamics Laboratory

U.S. GOVERMENT PRINTING OFFICE 1975-640-451/217 REGION NO, 4

39



DISTRIBUTION

INTERNAL CC
Mr. L. D. Wofford, Jr.

DS30

Dr. Bucher AS61 (2)

ED01 AS61L (8)
Dr. Lovingood

AT01 (6)
ED11

Dr. Blair EXTERNAL

ED15 Computer Sciences Corp.

Dr. Winder 8300 Whitesburg Dr.
Huntsville, Ala. 35802

ED21 Attn: Dr. P. L. Neely (6)
Mr. Ryan

Scientific and Technical Information Facility (25)
ES11 P. O. Box 33

Dr. Teuber College Park, Md. 20740
Attn: NASA Representative (S-AK/RKT)


